Proceedings of the

1999 ASME Design Engineering Technical Conferences

September 12-15, 1999, Las Vegas, Nevada

DETC99/DTM-8742

THE REPRESENTATION OF FUNCTION IN COMPUTER-BASED DESIGN

Simon Szykman, Janusz W. Racz and Ram D. Sriram
Manufacturing Systems Integration Division
National Institute of Standards and Technology
Building 304, Room 6
100 Bureau Drive, Stop 8262
Gaithersburg, MD 20899-8262

Keywords: Design Repositories, Function, Information Modeling, Representation, Taxonomy

ABSTRACT

This paper proposes a standardized representation of func-
tion for use by the research community, industry, and eventu-
ally commercial software vendors. This includes schemata (in-
formation models) for representation of function and associated
flows, as well as an initial attempt at developing taxonomies of
functions and flows. The objective of the latter effort is to gen-
erate taxonomies that are as small as possible, yet generic
enough to allow modeling of a broad variety of engineering
artifacts. This representation is intended to provide a generic
infrastructure that will facilitate the capture and exchange of
function information among researchers at present, and eventu-
ally in industry by contributing to interoperability between
design systems, be they commercial or developed internally
within a company.

1 INTRODUCTION

Engineering function has been the subject of investigation
in several research communities. A majority of the work in
this area has been done in the artificial intelligence (Al) do-
main, where the representation of function has been studied in
both the design modeling and the function-based reasoning
communities. More recently, function has increasingly been
the subject of research within the engineering domain, much of
which has been conducted within the design theory and meth-
odology community.

A review of the literature in area of engineering function
shows that the bulk of the research falls into a small number of
categories though individual research projects do, in some
cases, span across more than one of these categories:

* Studies of the use of function by designers in the design
process.

e The development of qualitative or rule-based models that
attempt to codify knowledge about the use of function in
the design process with the objective of using function-
based reasoning as an aid to engineers and designers.

¢ The development of design artifact models that extend be-
yond traditional geometric representations to capture some
representation of function.

¢ The development of quantitative models that map function
to the physical domain, i.e., the mapping of function to
physical or behavioral models associated with assemblies,
subassemblies, and components within a design artifact,
with the goal of reasoning about a design artifact or simu-
lating its behavior.

Ultimately, in order for any of this work to have an impact
on the engineering industry, it must be used by engineers.
There are three ways in which knowledge can transition into
industry. First, engineers can read papers and/or books that
describe the use of function by designers and use that knowl-
edge to improve their own design processes. This is the most
natural transition for research in the first category listed above.
Second, engineers in industry can develop computer-based de-
sign tools that incorporate the kinds of models described in the
other three categories. With an emphasis on more effective use
and reuse of knowledge, information about artifact function is
increasingly being used in industry though typically this in-
formation is part of textual documentation and is not repre-
sented in any formal way. Third, CAD/CAM/CAE (computer-
aided design/manufacturing/engineering) software tool vendors
can begin to incorporate function representation into their
commercial systems.

With either of the two latter technology transition paths,
the use of representations and models of function in individual

systems (be they developed internally within a company or
commercial) is only one step towards realizing an impact on
product development. Equally important is the ability to share
and exchange knowledge with other individuals, design teams,
suppliers, corporate partners, etc., who in practice will often not
be using the same software systems. Capture of information is
only of limited use if the information cannot be effectively
communicated to others. Indeed, a major barrier to information
exchange in industry today is the proliferation of incompatible
proprietary formats for representation of artifact geometry. An
analogous problem could easily inhibit the effective use of func-
tion-based representations and models in product development.

To address this issue in a proactive, rather than reactive,
manner, this paper proposes a standardized representation of
function for use by the research community, industry, and even-
tually commercial software vendors. In the near term, the pri-
mary users of this representation will be in the research com-
munity as function representation and function-based reasoning
have not yet transitioned into widespread use in industry. A
standardized format for representation of functional information
will provide a starting point for new researchers, and will also
enable the exchange of information among researchers who are
currently active in this area.

One option is for researchers to modify ongoing work to
adopt this representation. Alternatively, for efforts that have
significant investment in existing representations, those repre-
sentations could be maintained while a standardized representa-
tion would serve as a neutral format for exchange of functional
information through the use of a mapping to translate between
an existing representation and a standardized one. This mode
of use is similar to the use of STEP (ISO 10303, Standard for
the Exchange of Product Model Data) (ISO, 1994a) for represen-
tation of geometry. STEP is not used as an internal representa-
tion for any major CAD system, but is supported via import
and export capabilities by numerous CAD vendors, enabling
large segments of industry to exchange geometric information
between otherwise incompatible systems.

A standardized format for representation of functional in-
formation will facilitate access to existing bodies of work. This
will allow researchers and software developers to leverage pre-
vious research without having to reinvent the proverbial wheel,
and possibly to tie together existing efforts in order to provide
systems with a greater level of capability and functionality. By
serving as a method of bridging currently-isolated islands of
research, this representation can serve to speed up progress in
the research community. Most importantly, the early estab-
lishment of a standardized representation, if broadly adopted as
a de facto standard or if formally incorporated as part of an in-
ternational standard, will help to avoid the emergence of com-
peting proprietary formats. In the realm of commercial geomet-
ric CAD systems, the problem of incompatible representations
has cost engineering industry quite literally billions of dollars
to deal with, not to mention the unquantifiable revenues that
might have been realized had interoperability between CAD
systems not been a barrier to productivity and collaboration.

With the problem of geometric CAD interoperability as a
lesson, industry has repeatedly expressed a desire for standardi-
zation in anticipation of new capabilities within CAD systems,

and not in reaction to these capabilities after their commercial
implementation, as has been demonstrated by industry partici-
pation in over a half dozen design-related industry workshops
held at the National Institute of Standards and Technology
(NIST). One of these workshops, the NIST Design Repository
Workshop, is particularly relevant to this research. Discussion
of the needs associated with representation of engineering func-
tion arose in three different breakout sessions. Specific state-
ments indicated (1) a need for representation of function in
CAD, in addition to geometry, (2) a need for a fixed representa-
tion scheme for modeling function, and (3) a need for a com-
monly agreed-upon set of functions performed by mechanical
systems (Szykman et al., 1998).

The work described in this paper addresses all of these
needs. This paper sets forth an initial specification for a stan-
dardized representation of engineering artifact function. This
includes schemata (information models) for representation of
function and associated flows, as well as an initial attempt at
developing taxonomies of functions and flows. The objective
of the latter effort is to generate taxonomies that are as small as
possible, yet generic enough to allow modeling of a broad vari-
ety of engineering artifacts. This representation is intended to
provide a generic infrastructure that will facilitate the capture
and exchange of function information among researchers at pre-
sent, and eventually in industry by contributing to interoper-
ability between design systems, be they commercial or devel-
oped internally within a company.

The next section provides an overview of related work
done in this area. Section 3 describes the schemata for the data
structures used to represent artifact function and associated
flows. Section 4 discusses the development of taxonomies of
generic functions and flows to be used in conjunction with the
function representation. Section 5 provides a more general dis-
cussion of additional function representation issues. Areas for
future research are discussed in Section 6.

2 RELATED WORK

The use of function has long-since been recognized as an
important part of the design process. Formalization of ap-
proaches to representing and reasoning about function, and us-
ing this knowledge to drive design, are in comparison rela-
tively new in the engineering field. Much of the early research
in the area function representation was performed in the artificial
intelligence (Al) field. Even definitions of function have varied,
indicating that the concept is a complex one. Common defini-
tions include any of a number of variations on one proposed by
Rodenacker (1971), which defines function as a relation between
the input and output of energy, material, and information. Pahl
and Beitz (1988) retain this characterization but generalize the
concept, defining function as an abstract formulation of a task,
independent of any particular solution. In the Al field, defini-
tions of function have often involved the concept of behavior (de
Kleer, 1984; Chandrasekaran, 1994; Iwasaki et al., 1995; Kan-
napan, 1995; Qian and Gero, 1996, Umeda and Tomiyama,
1997; Prabhakar and Goel, 1998; and others).

Functional Representation (FR) takes a top-down approach
to representing a device in the sense that the overall function is
described first, and then the behavior of each component is de-

scribed in the context of this function (Chandrasekaran, 1994).
As an extension of this approach Iwasaki et al. (1995, 1997)
propose the Casual Functional Representation Language
(CFRL) for representing device function with well-defined se-
mantics in terms of behavior. This formalism allows the
specification of conditions that a behavior must satisfy, such as
occurrence of temporal sequences of events and casual relations
among them. Sasajima et al. (1996) propose a method and a
vocabulary for representing components captured from the
viewpoints of behavior and function. Their Function and Be-
havior Representation Language (FBRL) does not rely on do-
main-specific terms and enables model builders to describe a
component at various levels of abstraction. Other approaches to
generic artifact modeling attempt to integrate representations of
structure, behavior, and function. Models of this type have
been developed by Goel et al. (1996), Qian and Gero (1996)
Umeda and Tomiyama (1997), Gorti et al.(1998), Prabhakar
and Goel (1998), and Szykman et al. (1999a).

The view taken in this paper is that function and behavior
are two different facets of a design artifact, but are themselves
unrelated. A generic function can be satisfied by more than one
physical embodiment, each of which may achieve that function
with different behaviors. Function may drive design, and
therefore an artifact behavior may exist in order to satisfy re-
quired functions. Both are necessary to characterize a design
artifact, but the concept of behavior is not necessary for the ge-
neric representation of engineering functions.

The variety in definitions of function have led to a variety
of uses and representations of function. Baxter (1994) distin-
guishes two types of representations: models based on inputs
and outputs of flows, and syntactic languages. The first type
generally follows the Pahl and Beitz paradigm of the flow of
materials, energy and signals through a hierarchy of functions.
The overall function is determined for a system and then broken
down into a set of subfunctions. This type of decomposition
yields a functional graph that roughly approximates subassem-
bly boundaries (Shapiro and Voelcker, 1989). Other ap-
proaches including (Kirschman and Fadel, 1998), (Umeda and
Tomiyama, 1997), and the one taken in this paper, view the
functional description of a system as being described by an ab-
stract functional decomposition that may, but need not, have a
direct mapping onto an isomorphic physical decomposition of
assemblies and subassemblies.

Syntactic languages describe a design artifact using a
grammatical approach where a grammar is used to capture in-
formation about function. In general, these grammars consist of
combinations of verbs (functions) and nouns (parts of a design
artifact, or flows) such as “hold liquid” (Lai and Wilson,
1989), “crush material” (Hundal, 1990), “create lateral motion”
(Sturges et al., 1996), “transmit linear motion” (Kirschman
and Fadel, 1998), and “convert electricity to thermal energy”
(Stone and Wood, 1999). Approaches such as these can capture
the essence of many artifact functions; however, they do not
fully address the needs of a formal representation of function
because they do not include information models that capture
other types of information relevant to function, or the explicit
mappings between functions to flows, and between the function
domain and the physical domain. The representation of func-

tion described in this paper seeks to address these limitations
by providing formal schemata and taxonomies of terms used to
describe artifact functions and associated flows.

3 REPRESENTATION OF FUNCTION

This section describes generic representations for function
and associated flows (e.g., material, energy, and signal flows).
Within the context of this representation, function and flow are
represented separately using different schemata, or information
models. There are several motivations behind the decision to
decouple the representation of function and flow. The first rea-
son is that by separating the representations, changes can be
made to one aspect of the representation without changing the
other. For instance, if the function of an artifact is to convert
one kind of energy (a flow) into another, the source, destina-
tion, or other properties and parameters of a flow can be modi-
fied without making any changes to the representation of the
function itself.

The second reason for the separation of function and flow is
to avoid a proliferation of concepts required for modeling arti-
facts. If flows were considered as a part of a function, six differ-
ent functions would be required to represent the following: con-
vert direct current to translational motion, convert direct cur-
rent to rotational motion, convert translational motion to di-
rect current, convert translational motion to rotational mo-
tion, convert rotational motion to direct current, convert rota-
tional motion to translational motion. By considering func-
tions and flows separately, only a single convert function, is
needed; this function can have as inputs and outputs many dif-
ferent flows (including direct current, translational motion, rota-
tional motion, as well as others). As another example, Collins
et al. (1976) present a list of 105 functions taken from the con-
text of helicopter failures. Of those, eleven have to do with
transmitting (of force, torque, motion, etc.) and five have to do
with limiting (of force, pressure, etc.). In contrast, as viewed in
the context of the representation described in this research,
transmit and limit are functions, and force, torque, motion,
pressure are represented separately as flows.

The final reason for this separation is to facilitate the repre-
sentation of functions that are not associated with any particular
flows. While the focus of this paper and the examples given in
this section are on representation of flow-based functions, the
representation of functions that do not act on flows can be ac-
complished by defining functions that simply have no input or
output flows. In contrast, were the representation of flows to be
included as part of the function information model, to represent
non-flow-based functions either a separate schema would have
to be developed or the flow portion of the function representa-
tion would have to be carried around, unused, creating unneces-

sary baggage.

3.1 The Function Schema

The schema for the function information model is shown in
Figure 1, where a word in brackets (“[]”) indicates a reference
to another data structure, and braces (“{ }”) indicate a list of
references to other data structures. The Name of the function is
a string, and is required to be unique. The Type is a reference

Function
Name string
Type [Generic_function_class]
Documentation string (orNULL)
Methods string (orNULL)
Input_flow {Fow]} (or NULL)
Output_flow {[Fow} (or NULL)
Subfunctions {[Function]} (or NULL)
Subfunction_of [Function] (or NULL)

Refening_artfact [Artfact]

Figure 1. Schema for Representation of Function

to a generic function class that is part of a function class taxon-
omy (to be discussed in Section 4). Documentation is a
string used to describe the function. In cases where a descrip-
tion is somewhat long, this string can consist of or include file
paths or Web universal resource locators (URLs) that lead to
more information, images, etc. Methods is also a string and
can also be a file path or Web URL. This item differs from
Documentation in that Methods is intended to include com-
puter-processable information (such as a computer program,
code fragment, rules, constraints) to support computer-based
reasoning about a design. Neither Documentation nor Meth

ods are required and either field may be left empty (i.e., NULL).

The next two items in the schema are Input flow and
Output_flow . These are references to data structures represent-
ing the input and output flows for the function. As described
above, braces indicate a list of references; thus the function
schema can represent functions having multiple inputs and out-
puts. Since not every function has both input and output
flows, these can also take the value of NULL To illustrate, a
motor has a transformation function “Convert” that transforms
an electrical energy flow into a rotational motion flow, and
therefore has both input and output flows. In contrast, the func-
tion of a battery may be to supply electrical energy, in which
case the battery would have an output flow without having an
input flow.

The next item in the schema is Subfunctions . This item
is a list of references to other function data structures, allowing
a function to be decomposed into multiple subfunctions each of
which may have its own associated input and output flows.
These flows may in turn each be associated with different
physical parts of a design artifact. In cases where it is not nec-
essary to further decompose a function into subfunctions, this
item would be left empty or NULL This use of Subfunctions
to decompose a function would, for example, be used to model
the functionality of an assembly. At one level an assembly is
in individual entity that has a function, while at another level it
consists of multiple subassemblies or components each of
which contribute to the overall functionality of the assembly.
The decomposition enabled by Subfunctions provides the
means to map complex functionality to more detailed portions
of an artifact model. This idea will be illustrated in an example
later in this section.

The next item in the schema is Subfunction_of , which
can be thought of as the inverse of a reference indicated by Sub-

functions . In other words, if function A has functions B and
C as subfunctions, then B and C are subfunctions of A and will
list function A under Subfuncton of . A function will only
have a Subfunction_of if it is a subfunction of another func-
tion; otherwise, Subfunction_of will have a value of NULL
The last item in the function schema is Referring_artifact .
This is a reference from a function back to the artifact that refer-
ences it.

In reality, Subfunction_of and Referring_artifact are
both redundant information. As will be illustrated in an exam-
ple below, one can view references among data structures as
forming a graph with links from an artifact to its functions, and
from a function to its flows. The use of these two references
effectively make these links bi-directional. These items are
present for convenience at the software development level.
Some developers of a design artifact modeling system may find
it convenient to use this link to get from a function to the arti-
fact that references that function, while others could find that
same artifact by searching all the artifact data structures for the
one that references the function of interest. Put another way, a
graph can be traversed or searched regardless of whether links
are uni-directional or bi-directional. Both approaches have pros
and cons, depending on how the artifact modeling system is
implemented, and on how data is stored and retrieved. Al-
though a discussion of these implementational issues is beyond
the scope of this paper, these references have been included in
the function schema to provide flexibility for multiple imple-
mentation approaches even though, strictly speaking, only
links in one direction are truly necessary.

3.2 The Flow Schema

Figure 2 shows the schema for the flow information model.
Like the function schema, the flow schema has a Namethat is
required to be unique, a Type (that references the generic flow
class to which a given flow belongs, taken from a flow taxon-
omy to be discussed in Section 4), and a Documentation
string. In addition to these items, the flow schema also has a
Source and a Destination , which reference the physical arti-
facts corresponding to the sources and destinations of the flows
for a given function. These two items are shown with braces,
indicating a list of references, to allow the representation of a
flow having multiple sources or destinations. This would not
be uncommon in electromechanical devices where a device
might have a power input from batteries arranged in parallel
(multiple flow sources), or where the output flow from a power
source might drive several devices (multiple flow destinations).
Either one (but not both) of these can also take the value of
NULL'

There are a great many properties or parameters that can be
associated with flows, many of which depend on the kind of
flow, the nature of design artifact under consideration, the

" In reality, a flow can neither appear from nowhere, nor vanish into
nothingness. However, in most cases, a design artifact will have one or more
flows having a source or destination that is not part of the artifact representa-
tion itself. In cases where the source or destination resides outside of the
modeled artifact, the source and destination in the flow representation would
have NULL values. The modeling of flows that cross these boundaries will be
discussed further in Section 4.

Name sting

Type [Generic_flow_class]
Documentation string (or NULL)
Source {Artifact]} (or NULL)

Destination {JArtifac]} (or NULL)
Properties {string} (or NULL)
Refening_functions {[Function]}

Figure 2. Schema for Representation of Flow

domain of interest, etc. Rather than attempt to itemize a priori
all the potential properties that could be relevant to a given
flow and capture them in a monolithic data structure, the Prop-
eries item is provided as part of the flow schema. The
Properties item is a list of strings that specify flow properties
or parameters, and can vary based on the user’s requirements.
For example, an electrical flow may have a property that speci-
fies its voltage in a string such as “v = 5 Volts”. Other kinds
of properties could also be included, such as range limits, toler-
ance information, etc. While various types of information can
be represented in this manner, the schema itself does not in-
clude a description of the meaning, or semantics, associated
with Propertes ; they simply appear as a list of strings.
Thus, an electrical flow that varies sinusoidally with time
might be specified with a string such as “v = 3 sin (t/2)”, but
parsing that string to elicit its meaning in order to use that
information for function-based reasoning becomes a requirement
at the implementation level.

The last item in the schema is Refering functions ,
which is a list of references to functions that reference that flow.
As with the Refering_artifact reference in the function

schema, this information is redundant but is provided, never-
theless, for implementational convenience.

3.3 Examples

The relationship among the representations of the various
information types for the motor described above is illustrated
graphically in Figure 3, with boxes representing data structures
and arrows representing references from one data structure to
another. The functions and flows are labeled with the Nameat
the top and the Type (generic function or flow class) in paren-
theses below. Figure 3 shows the mappings between func-
tion/flow/artifact for the motor. As the figure illustrates, the
motor function is to convert electrical energy that goes from a
wire to the motor, into rotational motion that goes from the
motor to a shaft. Note that the directions of the arrows repre-
sent the references in the data structures presented above and not
necessarily the direction of a flow. Although the general direc-
tion of flow in this example is from left to right in the figure
(wire to motor to shaft), the input flow arrow for the motor
function points out from the motor function—not into
it—because the function data structure references the flow.

Clearly, any design artifact modeling tool that uses this
representation of function would require some kind of artifact
representation as well. A comprehensive discussion of artifact
representation is outside the scope of this paper, as such a rep-
resentation would include not only representation of function,
but also form, behavior, relationships among artifacts, etc. An
artifact schema would also include (1) a method of representing
the physical decomposition of an artifact into assemblies, sub-
assemblies and components (much as the function schema al-
lows the decomposition of a function into subfunctions), and
(2) a method of mapping the physical domain to the function
domain (just as the function and flow schemata map the func-

r—-—--- 1
FomTTTTTTTTTm » Motor (& -------------- f
1 1
. . 1 e ———— 4 1
Destination ' A Referring artifact ' Source
1 ! 1
1 1
! Referring_ Referring_ !
Motor_input function Motor_function function Motor_output
(electrical_energy (convert) (rotational_motion
1)
Source | Input_flow Output_flow | Destination
r--‘--u r--'--u
| | | |
! Wire ! Legend ! Shaft !
Tt TT ’ Data structures: References to: oo }
i__ ! Artifact - =% Artifact
El Function => Function
|:| Flow — Flow

Figure 3. Graphical lllustration of Motor Function Representation

1 Pump_ !

1 N
1 MechamsmI

, Referring_artifact

Subfunction_of Mech_function
—— (convert)

| Subfunction_of

Input_flow Gearbox_functio<

Subfunctions

C-F_function [[Output_flow

(convert) (convert)

Referring_artifac't Output_flo Input_flow | Referring_artifact
High_speed_rotatiop R Low_speed_rotatioh 'cam and' Piston_motion
(rotational_ motion)~ - :L _G_e_""ib_oi(?' = —1 (rotational_motion)[== :L _f(_)llojw_e_r ,' - (osc._transl._ motion)

Source | Destination Source Destination Source | Destination
e
. ' , Piston_|
'+ Shaft 1 Legend 1 _heads !
T - Data structures: Referencesto: | =~~~
i__ 1 Artifact ~~ % Artifact

Note: The Referring_function . — .

references for the three flows have El Function > Function

been omitted to simplify the figure [] Flow —» Flow

Figure 4. Graphical lllustration of Function Representation for Fluid Pump Mechanism

tion domain to the physical domain). Thus, although this
paper is not concerned with representation of the artifact itself,
artifacts are shown in the figure to illustrate this mapping be-
tween domains. Since no schema for the artifact itself is given,
arrows indicating references from artifacts to functions are not
explicitly shown in the figures.

A second example, the mechanism from a fluid pump de-
sign, can be used to demonstrate the use of Subfunctions to
decompose a function into multiple subfunctions. Within this
pump is a mechanism that takes the rotational motion from a
rotating shaft (which is driven by a motor) and converts it to
oscillatory translational motion used to drive the pump piston
heads. At one level, this mechanism can be considered as a
single artifact, having an input flow (rotational motion) whose
source is a motor shaft, and an output flow (oscillatory transla-
tional motion) whose destination is the pump heads. The func-
tion of this mechanism could therefore be represented graphi-
cally using a structure that looks the same as that shown in
Figure 3 but with different labels in the boxes since the func-
tion/flows/artifacts are different.

However, the function of this mechanism is actually more
complex, consisting of multiple subfunctions each satisfied by
different portions of the mechanism. The mechanism accom-
plishes the conversion of motion described above as follows: a
motor drives a shaft, which enters a gearbox; the gearbox re-
duces the speed of rotation, and the output motion drives a
camshaft; the cam followers have links to the pump piston

heads, resulting in an output at the piston heads that is an os-
cillatory translational motion. These multiple functions can be
represented individually and mapped appropriately back to the
physical artifact domain. The graphical representation of the
mechanism function is shown in Figure 4.”

It should be noted that the decomposed subfunctions are
represented in conjunction with, not in place of, the composite
function, allowing artifacts and their function to be represented
at multiple levels of abstraction simultaneously. In this exam-
ple, the mechanism can be interpreted at one level as a single
artifact with a single function (to convert high-speed rotation to
oscillatory translational motion), and at another level as a set of
subfunctions which are mapped to different physical compo-
nents of the mechanism. Since the schemata are invariant and
do not depend on the level of abstraction, the function and
physical decompositions, as well as the mappings between the
function and physical domains, can extend upwards and down-
wards numerous levels. Just as the mechanism is decomposed
as shown in Figure 4, the pump itself may at one level be rep-
resented as a single artifact, and then be physically and func-
tionally decomposed into multiple components, subassemblies,
and subfunctions, which would include the mechanism as well
as other parts of the pump.

? As before, what is not shown in the figure is the actual artifact repre-
sentation that would capture the fact that this mechanism is a subassembly
within the pump, and that the gearbox, cam and follower are parts of the
mechanism assembly.

4 GENERIC TAXONOMIES OF FUNCTION AND
FLOW

The function and flow schemata described in Section 3
both include a Type, used to reference the generic class to
which that function or flow belongs. In addition to the devel-
opment of these schemata, a second objective of this work is
the development of generic taxonomies of function and flow
which are concise, yet comprehensive enough to allow the
modeling of a broad variety of engineering artifacts.

In this context, a taxonomy is a hierarchical classification
of terms. The organization of the flow taxonomy follows a
traditional approach set forth by Pahl and Beitz (1988) whereby
flows are divided into material, energy and signal flows.” It is
important to note that the categorizations used in the taxono-
mies are not unique, but are rather a matter of convenience.
The organization of the taxonomy is a particular instance of a
view of the terminology it contains. For example, the flow
taxonomy is broken down by domain (mechanical, electrical,
thermal, etc.), each of which have various terms below them.
However, an alternative categorization could have organized
them by the mapping of variable types across domains." The
importance should be placed on the content of the taxonomy
rather than the specific approach to organizing the terms.

The need for standardized terminology in function-based
design is often overlooked in the literature; however, it is an
issue of critical importance for a number of reasons. The first
reason is to reduce ambiguity at the modeling level. Ambigui-
ties can occur when multiple terms are used to mean the same
things, or when the same term is used with multiple meanings.
The distillation of a large body of terms into concise taxono-
mies does not eliminate this problem entirely, but it signifi-
cantly lessens its occurrence.

A related issue is that of uniqueness, not at the level of
individual terms as with synonyms, but at the concept level.
The larger the number of terms there are in a vocabulary, the
more different ways there are to model or describe a given con-
cept. This makes processing of information that has been rep-
resented more difficult, whether it be a human trying to inter-
pret information modeled by somebody else, or whether it be
algorithms developed for function-based reasoning or design
automation. This problem is mitigated by taking a minimalis-
tic approach regarding terminology. In practice, it is impossi-
ble to have a vocabulary that allows all concepts to be mod-
eled, in only one unique way, because it is the flexibility re-
quired for representation of a broad set of concepts that results
in multiple ways of expressing the same concept. However, to
whatever extent uniqueness problems at the concept level can

* These terms are used somewhat loosely. Many of the terms under the
energy flow category relate to the transfer of energy, but do not actually have
units of energy. Others such as position and angle, strictly speaking do not
necessarily involve transfer of energy, though changes in position and angle
(i.e., displacement and rotation) can.

* In the systems engineering field, there are mappings between certain
types of variables. For example, position in the mechanical translational do-
main is mapped to angle in the rotational domain, to charge in the electrical
domain. Force is mapped to torque, and to voltage. Velocity (time rate of
change of position) is mapped to angular velocity (time rate of change of
angle), and to current (time rate of change of charge), and so on. In most
cases, these mappings extend into other domains as well (thermal, hydraulic,
etc.).

be reduced, interpreting information that is represented can be

made easier.

A third reason for developing a standardized terminology is
that it increases the uniformity of information within function
models. This will facilitate the exchange of function informa-
tion among distributed researchers and developers, and will
greatly simplify the task of indexing and retrieval of information
for the purposes of function-based searches and query capabili-
ties.

An extensive review of the literature yielded a large body of
function- and flow-based terminology within the context of en-
gineering function (most notably Collins et al., 1976; Alt-
shuller, 1984; Hundal, 1990; Keuneke, 1991; Chandrasekaran,
1994; Malmgqvist et al., 1996; Sasajima et al., 1996; McAd-
ams et al., 1998; Kirschman and Fadel, 1998; Modarres,
1998). While these terms were in some cases split into a few
categories, they generally were not organized into multi-level
taxonomies. From these bodies of terminology, an extensive
list of functions and related flows was extracted. The lists of
functions and flows were then distilled into considerably
smaller ones in the following ways:

By removing synonyms (e.g., “change” and “modify”).

e By eliminating functions that were specializations of more
generic functions. For example, boil, melt, freeze, con-
dense, evaporate, liquefy, atomize, are all examples of a
more generic convert function that transforms matter from
one state into another.

* By eliminating flows that were specializations of more
generic types of flows. For instance, the concept of smoke
does not appear in the list of flows because smoke is an ex-
ample of an aerosol, a more generic term that does appear
in the list.

The lists of functions and flows were then categorized hier-
archically and organized into taxonomies. The top-level divi-
sions of the two taxonomies are shown in Figure 5. The in-
dentation of terms identifies functions or flows that are subtypes
of a more generic type; the bracketed ellipsis “[...]” indicate
that each of the types listed actually has additional terms as
subtypes that are not listed in the abbreviated taxonomies
shown in the figure. The extended taxonomies of function and
flow appear in Appendices A and B, respectively. The tax-
onomies contain over 130 functions and over 100 flows. The
evolution of both taxonomies to achieve more comprehensive
coverage of engineering functions will be an ongoing part of
this research.

While the content of the two taxonomies is self-
explanatory for the most part, there are a couple of items that
merit further discussion. The first is the use of the import and
export functions that appear in the usage-function portion of the
taxonomy. As described in Section 3, in some cases a flow
may cross the boundary between the artifact being modeled and
the external world. For example, a machine may use electricity
whose source is an electrical wall outlet, but the outlet is not
actually part of the artifact representation. The crossing of the
artifact boundary by such flows is modeled using the import
and export functions. Flows referenced by import and export
functions have NULL values for source and destination, respe-

Function
Usage-function [...]

Sink [...]

Source [...]

Storage [...]
Combination/distribution-function [...]
Transformation-function [...]
Conveyance-function [...]
Signal/Control-function [...]

Mathematical/Logical [...]

Signal-processing [...]
Assembly-function [...]

(a) Function Taxonomy

Flow
Material [...]
Solid [...]
Object [...]
Liquid [...]
Gas [...]
Multi-phase-mixture [...]
Energy [...]
Generic [...]
Mechanical-domain [...]
Translational-domain [...]
Rotational-domain [...]
Electrical-domain [...]
Thermal-domain [...]
Hydraulic-domain [...]
Signal [...]
(b) Flow Taxonomy

Figure 5. Top-level Subdivisions for the Function and Flow Taxonomies

tively, since the source or destination resides outside of the
modeled artifact. In the machine example the function of the
power cord, which is part of the artifact representation, is to
import electrical energy; the representation of the electrical en-
ergy flow would have a NULL value for its source, and some part
of the machine as its destination.

The other issue of note is the presence of what appear to be
flow parameters or properties in the flow taxonomy. In the
approach presented in this paper, flows are inputs and outputs
to functions. These flows may have properties associated with
them, as can be seen from the flow schema shown in Figure 2,
but properties of flows are not themselves flows. One might,
for instance, question the term femperature in the flow taxon-
omy. Devices may have functions (and associated flows) such
as supply (function) heat (flow), distribute heat, transmit heat,
while functions such as supply/distribute/transmit temperature
do not seem sensible. Rather, temperature might instead be a
property of a fluid flow used to supply heat.

From this perspective, the term temperature would not
belong in the flow taxonomy. However, within the scope of
control functions, temperature may indeed be treated as a flow
by virtue of being an input or an output of a function. Valid
control functions might be to decrease (function) temperature
(flow), measure temperature, limit temperature, etc. What is a
property of a flow in some contexts, may be viewed as a flow in
others. The flow taxonomy contains many flows, each of
which potentially has a broad set of different parameters that
could conceivably be used as flows for control purposes. Thus,
some common examples of these kinds of terms have been in-
cluded in the flow taxonomy but no attempt has been made to
identify an exhaustive list.

5 DISCUSSION

The specification for function representation presented in
this paper provides a simple, generic language for representing
function information. The intent is not to provide a system for
function modeling, but to provide a framework onto which such

systems can be built. Consequently, the contribution of this
work is solely at the representational level. This work does
not attempt to specify sow such information should be used.
How information about function should be used in the design
process, how reasoning about function should be done given
this information (via constraints, rule-based expert systems,
automated or not, etc.) are all beyond the scope of this work.

Representation of function is only one facet of engineering
artifact representation; another important one is behavior. The
work presented in this paper is complementary to ongoing
work in the area of behavior modeling, as a comprehensive ar-
tifact model would account for both an artifact’s function and its
behavior. What a behavior model could add to a generic func-
tion representation is a formal description of how a given arti-
fact physically accomplishes a function, as well as constraints
or limitations on such behavior.

As an example, the Casual Functional Representation Lan-
guage (CFRL) mentioned briefly in the related work section
(Iwasaki et al., 1995, 1997) provides semantics that relate func-
tion to behavior. This allows the specification of conditions
that a behavior must satisfy, such as occurrence of temporal
sequences of events and casual relations among them. What
the research presented in this paper could contribute to that
work is a formal language and generic terminology for the rep-
resentation of function and for the exchange of function informa-
tion with others—something not presently addressed in CFRL
and related work in behavior modeling.

Thus far, this paper has focused on the formal aspects of
representing information related to engineering artifact func-
tion—the issues of information modeling (schemata) and termi-
nology (taxonomies). There are several higher-level issues that
have influenced this work but which have not been discussed in
previous sections. Section 3 discussed the representation of
functions that may have multiple input and output flows, as
well as the decomposition of a single artifact function into mul-
tiple subfunctions. Neither of these is the same as function

sharing, a common occurrence (and in some cases even a design
strategy) in engineering design.

While subfunctions decompose a single artifact function
into parts that may be mapped onto different subassemblies or
components of that artifact, this is distinctly different from func-
tion sharing wherein a system/assembly/component accom-
plishes multiple distinct functions. This work can support the
representation of multiple functions, but does not explicitly
account for this concept because the fact that a single artifact
performs more than one function is something that must be
represented at the artifact representation level, which is not ad-
dressed in this paper. One potential approach is to develop an
artifact representation that includes a list of functions, just as
the function schema includes a list of flows. Once the multi-
plicity of functions is captured at the artifact level, however this
is achieved, each of these multiple functions can modeled using
the representation presented in this paper.

Other issues arise at the modeling level when attempting
to determine which functions and flows should and shouldn’t
be modeled. Some functions and flows are associated with an
artifact’s intended use, while others are effects produced as a
consequence of the particular physical embodiment. At the
modeling level, any functions and flows that are part of the de-
sign by intent should be represented. In contrast, those that
arise as effects rather than by intent may or may not be repre-
sented, depending on whether or not any part of the artifact ex-
ists to interact with them.

Consider a motor whose function is to convert electrical
energy into rotational motion. As with most mechanical de-
vices, this motor makes noise, in this case because the compo-
nents have an effect of converting mechanical energy into acous-
tical energy. In general, the acoustical energy flow does not
need to be modeled as part of the artifact function. However, if
the motor includes some form of sound insulation to absorb the
sound, then that flow does need to be modeled. Even though
the generation of sound is not part of the intended function of
the motor, part of the physical design exists to interact with
that flow. Since the sound insulation exists to absorb (func-
tion) acoustical energy (flow), the acoustical energy should be
included when doing the function modeling. Similarly, some
amount of heat is almost always generated as an effect of trans-
forming energy into motion or vice-versa. If part of an artifact
exists to carry away that heat, it should be represented; other-
wise, modeling that flow may not be necessary.

As a related comment, it should be noted that it is often
difficult to completely decouple different types of flows (Pahl
and Beitz, 1988, Ullman, 1992). It takes energy to create or
change motion; motion of matter involves kinetic energy; and
in many cases a signal used for control is an electrical signal,
which is actually an energy flow. In general, the modeling
should be done at whichever level is most convenient for the
designer. A designer will typically think of a gearbox as some-
thing that modifies motion, and think of a control device as
having an input signal. Physically, both the motion and the
signal exist as a result of energy flows, but conceptually it is
more comfortable to think of motion and a control signal as
being distinct types of flows.

6 SUMMARY AND AREAS FOR FUTURE RESEARCH
This paper proposes a standardized representation of func-
tion consisting of schemata for functions and associated flows,
along with taxonomies of generic functions and flows. The
formal representation provides the means for representing func-
tions that have multiple input and output flows, properties and
parameters associated with flows, and the decomposition of
functions into subfunctions each potentially having its own
distinct flows. The representation also provides a mapping
from the function domain to the physical domain (via references
to artifacts in the flow schema) and supports the representation
of function sharing provided that it is used with an artifact rep-
resentation that permits artifacts to have multiple functions.

Future work relating to the research presented in this paper
is continuing along several avenues. To date, the focus of the
development of the function taxonomy has focused on classes of
functions that have flows associated with them. These are,
however, not the only types of functions. Another important
class of functions are assembly functions, such as /ocate, con-
strain, and fasten. A list of about twenty assembly-related
functions has been included as part of the function taxonomy.
This list is only representative, as many such functions exist.
Work relating specifically to representation of assembly infor-
mation and function has been done by various researchers, in-
cluding Gui and Mintyla (1994), Baxter et al. (1994), Brady
and Juster (1995), Roy and Bharadwaj (1998), Shooter et al.
(1999), and others. Interactions with the latter group, a team of
researchers also at NIST, will be used to expand the scope of
the taxonomy into the area of assembly functions. In addition
to assembly functions, there are still other non-flow-based func-
tions relating to more abstract types of issues such as to shel-
ter, to provide safety, or to provide access. While the taxon-
omy does not currently extend to cover these other functions,
the function representation itself is still capable of characterizing
these concepts simply by using the function schema with the
input and output flows having NULL values.

The schemata for function and flow presented in Section 3
are generic data structures, independent of implementation. A
computer-based implementation of a function modeling tool
that incorporates this representation is currently in progress. In
this implementation, the schemata are represented using the
Extensible Markup Language (XML) (World Wide Web Con-
sortium, 1998), a language similar in appearance to the Hyper-
text Markup Language (HTML) (World Wide Web Consor-
tium, 1995) but which allows the development of user-defined
tags, various kinds of references, and other mechanisms.

XML is not the only language that can be utilized for in-
formation modeling and knowledge exchange; other such lan-
guages include EXPRESS (ISO, 1994b), Knowledge Inter-
change Format (KIF) (Genesereth and Fikes, 1992), and Open
Knowledge Base Connectivity (OKBC) (Chahudri et al.,
1998). However, XML has the main advantage of widespread
adoption in the information technology world. More specifi-
cally, XML support is expected in upcoming versions of sev-
eral commercial Web browsers and word processing applica-
tions, in addition to a number of XML authoring and develop-
ment tools that are currently available.

This research direction is being explored in order to pro-
vide a more broad-based solution to an industry which is in-
creasingly looking towards purchase of off-the-shelf software
over in-house development when possible. Preliminary devel-
opment of mappings of the schemata presented in this paper
into XML is described in (Szykman et al., 1999b).

The implementation of these schemata will provide an
example of how a modeling tool may be built using this work
as a representational layer. While this development will pro-
vide a useful learning experience, for the work to be more
broadly applicable the function and flow taxonomies need to be
expanded. The function taxonomy has currently focused on
functions that have input and output flows associated with
them. As described previously, these are not the only types of
functions used by designers. The taxonomy lists several repre-
sentative assembly functions, but should be extended to include
additional assembly functions and other types of non-flow-based
functions. Within the flow taxonomy there will also be an
attempt to obtain more comprehensive coverage in the domains
that are currently included, as well as to fill out the domains
that presently only have a top-level “placeholder” or are not
present at all. The development of both these taxonomies will
be an ongoing process performed in conjunction with other
technical development.

A limitation of this work is that, alone, it is of relatively
limited utility. As engineering function is generally not of
interest in the absence of design artifact information, the repre-
sentation of function proposed in this paper is intended to be
incorporated as a layer within the context of a larger artifact
modeling system that includes a more comprehensive represen-
tation of a design artifact. Other important aspects of design
knowledge include geometry, behavior, physical (often hierar-
chical) decompositions, and other kinds of relationships.
Combining all of these kinds of knowledge into a comprehen-
sive representation, and building a useful system from it is an
area of longer-term research.

One such prototype system is being developed as part of
the NIST Design Repository Project (Szykman et al., 1999a;
Szykman et al., 1999¢). The implementation of a new architec-
ture for this system is in progress; this second-generation proto-
type will incorporate the schemata and taxonomies presented in
this paper, as well as interfaces for modeling design artifacts and
browsing repositories of artifact information. Part of this effort
will include the modeling of various consumer products. This
exercise will serve to validate the function and flow taxonomies
by helping to identify gaps between the kinds of functions and
flows that appear in real engineering systems and those that
have been captured in the taxonomies. Important issues such
as that of mechanisms for knowledge indexing and retrieval
have not been addressed to a significant extent, though it is
expected that the taxonomies that have been developed as part
of the work presented in this paper will have an impact on fu-
ture development.

Beyond its adoption within the NIST Design Repository
Project, it is hoped that the specification for a standardized rep-
resentation of function presented in this paper will propagate
into other parts of the academic and industrial research commu-
nities. In the near term, such a standardization will facilitate

10

information exchange among researchers. In the longer term,
this work is intended to provide a foundation for developers of
the next generation of CAD systems and design tools. Aside
from supporting ongoing research at NIST, helping to avert the
undesirable emergence of multiple competing, proprietary for-
mats—a problem that has adversely impacted industry in the
area of geometric modeling and representation—has been a
strong motivation for undertaking this work.

REFERENCES

Altshuller, G. S. (1984), Creativity as an Exact Science:
The Theory of the Solution of Inventive Problems, Gordon and
Breach Science, New York.

Baxter, J. E., N. P. Juster, and A. de Pennington (1994),
“A Functional Data Model For Assemblies Used To Verify
Product Design Specifications,” Proceedings of the IMechE,
Part B, Journal of Engineering Manufacture, 208:235-244.

Bracewell, R.H. and J.E.E. Sharpe (1996), “Functional
Description Used in Computer Support for Qualitative Scheme
Generation - Schemebuilder,” Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing, 10(4):333-346.

Brady, D. and N. P. Juster (1995), “A Computerised
Tool to Create Concept Variants from Function Structures,” Al
System Support for Conceptual Design, Proceedings of the
1995 Lancaster International Workshop on Engineering De-
sign, Sharpe, J. (Ed.), Springer-Verlag, pp. 206-226.

Chaudhri, V. K., A. Farquhar, R. Fikes, P. D. Karp, and
J. P. Rice (1998), Open Knowledge Base Connectivity 2.0,
KSL-98-06 (technical report), Stanford Knowledge Systems
Laboratory, Stanford University, Stanford, CA.

Chandrasekaran B. (1994), “Functional Representation: A
Brief Historical Perspective,” Applied Artificial Intelligence,
8:163-197.

Collins, J. A., B. T. Hagan, and H. M. Bratt (1976),
“The Failure-Experience Matrix—A Useful Design Tool,”
Transactions of the ASME Series B, Journal of Engineering in
Industry, 98(3):1074-1079.

de Kleer, J. (1984), “How Circuits Work,” Artificial Intel-
ligence, 24:205-280.

Genesereth, M. R. and R. E. Fikes (1992), Knowledge In-
terchange Format, Version 3.0 Reference Manual, KSL-92-86
(technical report), Stanford Knowledge Systems Laboratory,
Stanford University, Stanford, CA.

Goel, A., A. Gomez, N. Grue, J. W. Murdock, M. Recker
and T. Govindaraj (1996), “Explanatory Interface in Interactive
Design Environments,” Artificial Intelligence in Design ‘96, J.
S. Gero (ed.), Kluwer Academic Publishers, Boston.

Gorti, S. R., A. Gupta, G. J. Kim, R. D. Sriram, and A.
Wong (1998), “An Object-Oriented Representation for Product
and Design Processes,” Computer-Aided Design, 30(7):489-
501.

Gui, J.-K. and M. Mintyld (1994), “Functional Under-
standing of Assembly Modelling,” Computer-Aided Design,
26(6):435-451.

Hundal, M. S. (1990), “A Systematic Method for Devel-
oping Function Structures, Solutions and Concept Variants,”
Mechanism and Machine Theory, 25(3):243-256.

ISO 10303-1:1994 (1994a), Industrial Automation Systems
and Integration — Product Data Representation and Exchange
— Part 1: Overview and Fundamental Principles.

ISO 10303-11:1994 (1994b), Industrial Automation Sys-
tems and Integration — Product Data Representation and Ex-
change — Part 11: The EXPRESS Language Reference Manual.

Iwasaki, Y., A. Farquhar, R. Fikes, and J. Rice (1997),
“A Web-Based Compositional Modeling System for Sharing
of Physical Knowledge,” Proceedings of the 15th International
Conference on Artificial Intelligence, AAAI Press/MIT Press,
August.

Iwasaki, Y., M. Vescovi, R. Fikes, and B. Chandrasekaran
(1995), “Casual Functional Representation Language with Be-
havior-Based Semantics,” Applied Artificial Intelligence, 9:5-
31.

Kannapan, S. M. (1995), “Function Metrics for Engi-
neered Devices,” Applied Artificial Intelligence, 9:45-64.

Keuneke, A. (1991), “Device Representation: The Signifi-
cance of Functional Knowledge,” IEEE Expert, 6(2):22-25.

Kirschman C. F. and G. M. Fadel (1998), “Classifying
Functions for Mechanical Design,” ASME Journal of Mechani-
cal Design, 120(3):475-482.

Lai, K., and W. R. D. Wilson (1989), “FDL - A Lan-
guage for Function Description and Rationalization in Me-
chanical Design,” Journal of Mechanics, Transmissions, and
Automation in Design, 111:117-123.

Lind, M. (1994) “Modeling Goals and Functions of Com-
plex Industrial Plants,” Applied Artificial Intelligence, 8, pp.
259-284.

Malmgqvist, J., R. Axelsson, and M. Johansson (1996),
“A Comparative Analysis of the Theory of Inventive Problem
Solving and the Systematic Approach of Pahl and Beitz,” Pro-
ceedings of the 1996 ASME Design Engineering Technical
Conferences and Computers in Engineering Conference, Paper
No. 96-DETC/DTM-1529, Irvine, CA, August.

McAdams, D. A., R. B. Stone, and K. L. Wood (1998),
“Understanding Product Similarity Using Customer Needs,”
Proceedings of the 1998 ASME Design Engineering Technical
Conferences, Paper No. DETC98/DTM-5660, Atlanta, GA,
September.

Modarres, M. (1998), “Functional Modeling of Physical
Systems Using the Goal Tree Framework,” A4A41-98 Workshop
on Functional Modeling and Teleological Reasoning, Madi-
son, WI, July.

Pahl, G. and W. Beitz (1988), Engineering Design: A Sys-
tematic Approach, Springer-Verlag, New York.

Prabhakar, S. and A. K. Goel, (1998), “Functional Model-
ing for Enabling Adaptive Design of Devices for New Environ-
ments,” Artificial Intelligence in Engineering, 12:417-444.,

Qian L. and J. S. Gero (1996), “Function-Behavior-
Structure Paths and Their Role in Analogy-Based Design,”
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 10(4):289-312.

Rodenacker, W. (1971) Methodishes
Springer, Berlin.

Konstruieren,

11

Roy, U. and B. Bharadwaj (1999), “Design with Part Be-
haviors: Behavior Model, Representation and Applications,”
Submitted to Computer-Aided Design.

Sasajima, M., Y. Kitamura, M. lkeda, and M. Mizoguchi
(1996), “Representation Language for Behavior and Function:
FBRL,” Expert Systems With Applications, 10(3/4):471-479.

Shapiro, V. and H. Voelcker (1989), “On the Role of Ge-
ometry in Mechanical Design,” Research in Engineering De-
sign, 1:69-73.

Shooter, S., W. Keirouz, P. Hart, and K. Lyons (1999),
“The Open Assembly Design Environment Project: An Archi-
tecture for Design Agent Interoperability,” Proceedings of the
1999 ASME Design Engineering Technical Conferences (4th
Design for Manufacturing Conference), Paper No.
DETC99/DFM-8945, Las Vegas, NV, September.

Stone, R. B. and K. L. Wood (1999), “Development of a
Functional Basis for Design,” Proceedings of the 1999 ASME
Design Engineering Technical Conferences (11th International
Conference on Design Theory and Methodology), Paper No.
DETC99/DTM-8765, Las Vegas, NV, September.

Sturges, R. H., K. O’Shaughnessy and M. I. Kilani
(1996), “Computational Model for Conceptual Design Based
on Extended Function Logic,” Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing, 10:255-274.

Szykman, S., J. W. Racz, C. Bochenek and R. D. Sriram
(1999a), “A Web-based System for Design Artifact Modeling,”
Design Studies (accepted for publication).

Szykman, S., J. W. Racz, and R. D. Sriram (1999b),
“The Use of XML for Representing Functions and Taxonomies
in Computer-based Design,” Proceedings of the 1999 ASME
Design Engineering Technical Conferences (19th Computers
and Information in Engineering Conference), Paper No.
DETC99/CIE-9025, Las Vegas, NV, September.

Szykman, S., R. D. Sriram, C. Bochenek and J. W. Racz
(1999¢), “The NIST Design Repository Project,” Advances in
Soft Computing — Engineering Design and Manufacturing,
Roy, R., T. Furuhashi, and P. K. Chawdhry (Eds.), Springer-
Verlag, London, pp 5-19.

Szykman, S., R. D. Sriram and S. J. Smith (Eds.) (1998),
Proceedings of the NIST Design Repository Workshop,
Gaithersburg, MD, November 1996.

Ullman, D. G. (1992), The Mechanical Design Process,
McGraw-Hill, New York, NY.

Umeda, Y. and T. Tomiyama (1997), “Functional Rea-
soning in Design,” IEEE Expert Intelligent Systems and Their
Applications, 12(2):42-48.

World Wide Web Consortium (1995), Hypertext Markup
Language - 2.0, World Wide Web Consortium (W3C) Stan-
dard, September, <http://www.w3.org/MarkUp/html-
spec/html-spec_toc.html>.

World Wide Web Consortium (1998), Extensible Markup
Language (XML) 1.0, World Wide Web Consortium (W3C)
Recommendation, February, <http://www.w3.org/TR/REC-
xml>.

APPENDIX A: FUNCTION TAXONOMY
(Top-level categories are shown in bold to improve readability)

12

Function Transfer
Usage-function Translate
Sink Transmit
Absorb Transport
Consume Signal/Control-function
Destroy Actuate
Dissipate Adjust
Eliminate Close
Empty Decrease
Export Delay
Remove Detect
Source Display
Add Equalize
Create Enhance
Emit Generic-control
Extract Identify
Generate Increase
Import Indicate
Supply Inhibit
Storage Limit
Accumulate Maintain
Collect Mathematical/Logical
Store Add
Combination/distribution-function AND
Branch Decrement
Combine Differentiate
Connect Divide
Couple Increment
Distribute Integrate
Divide-flow Invert
Link Multiply
Mix NOT
Separate OR
Sort Shift
Transformation-function Sort
Amplify Subtract
Attenuate XOR
Convert Measure
Decrease Open
Filter Resist
Increase Retrieve-value
Modify Select
Modify-form Sense
Modify-property-magnitude Signal-processing
Refine Amplify
Conveyance-function Attenuate
Advance Clear
Channel Compare
Conduct Decode
Convey Decrypt
Direct Demodulate
Divert Digitize
Guide Encode
Generic-move Encrypt
Rotate Filter

Interrupt
Isolate
Modulate
Reset
Split-signal
Store-value
Switch
Time
Toggle
Track
Turn-on
Turn-off
Vary
Assembly-function
[Representative list; not comprehensive]
Assemble
Constrain
Cover

APPENDIX B: FLOW TAXONOMY
(Top-level categories are shown in bold to improve readability)

Flow
Material
Generic-matter
Mass
Solid
Object
Generic-object
Rigid-body
Elastic-body
Widget
Powder
Particulate
Granular-matter
Composite-material
Aggregate-material
Non-homogeneous-solid-mixture
Liquid
Incompressible-liquid
Compressible-liquid
Homogeneous-liquid
Liquid-mixture
Gas
Homogeneous-gas
Gas-mixture
Plasma
Multi-phase-mixture
Solid-liquid-mixture
Colloidal-suspension
Liquid-gas-mixture
Liquid-particle-aerosol
Solid-liquid-gas-mixture
Solid-particle-aerosol
Solid-gas-mixture
Energy
Generic

Disassemble

Enclose
Extract
Fasten
Fix
Guide
Join
Link
Locate
Orient
Position
Release
Remove
Secure
Separate
Stabilize
Support
Unfasten

Generic-force
Generic-energy
Generic-power
Generic-impedance

Mechanical-domain
Compliance
Friction-force
Weight-force
Generic

Generic-motion
Generic-irregular-motion
Generic-oscillatory-motion
Generic-inertia
Generic-curvilinear-motion
Generic-relative-motion
Mechanical-kinetic-energy
Mechanical-potential-energy
Gravitational-potential-energy
Spring-potential-energy

Translational-domain

Translational-motion
Oscillatory-translational-motion
Relative-translational-motion
Position

Displacement

Velocity

Acceleration

Jerk

Impulse

Force

Inertia

Momentum
Translational-impedance

Rotational-domain

13

Rotational-motion

Oscillatory-rotational-motion
Relative-rotational-motion
Orientation/angular-position
Angular-displacement
Angular-velocity
Angular-acceleration
Angular-jerk
Angular-impulse

Torque

Rotational-inertia
Angular-momentum
Rotational-impedance
Rotational-frequency

Electrical-domain

Electricity/charge-motion
Charge
Voltage/electromotive-force
Current
Generic-current
Direct-current
Alternating-current
Frequency
Voltage-pulse
Electrical-energy
Electrical-impedance
Resistance
Capacitance
Inductance

Thermal-domain

Entropy
Temperature
Entropy-flow

14

Heat
Hydraulic-domain
Volume
Volume-flow
Volume-flow-rate
Pressure
Pressure-momentum
Hydraulic-force
Hydraulic-energy
Hydraulic-impedance
Pneumatic-domain

Magnetic-domain
Acoustic-domain
Electromagnetic-domain
Optical-domain
Chemical-domain
Nuclear-domain
Signal
Generic-signal
Analog
Generic-analog
Oscillatory
Discrete

Generic-discrete
Binary

